Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Health Policy Open ; 4: 100090, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2271113

ABSTRACT

Background: The global 2030 Agenda covers a range of interconnected issues which need interdisciplinary and holistic approaches to improve human well-being and protect the natural environment. The COVID-19 pandemic has brought to light critical inequities in society and policy gaps in health services. As highlighted through analyses of the interlinkages among the Sustainable Development Goals (SDGs), connections between human health and well-being and the environment, can help support new policy needs in addressing systemic health crises, including widespread pandemics. Method: We identify links between the COVID-19 crisis and multiple SDGs in the context of Brazil based on a review of the current literature in the health sector.Findings: We identify synergistic connections between 88 out of 169 SDG targets and COVID-19, notably around themes such as City Environment, Contextual Policies and the value created by improved Information and Technology. Using the context of the Brazilian National Health Service (SUS) highlights recurrent interconnections from the focal point of target 3.8. This includes topics such as challenges for universal healthcare coverage, budget allocation, and universalisation. Conclusions: The framework developed for supporting policy-making decisions and the design of toolkits for dealing with future health-related emergency scenarios offers a practical solution in the health sector. It is worth noting that progress and action on public health systems and policies must go hand in hand with addressing existing socio-economic vulnerabilities in society. This is vital for tackling future pandemics and simultaneously addressing the SDGs.

2.
Am J Physiol Regul Integr Comp Physiol ; 324(4): R435-R445, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2227378

ABSTRACT

Coronavirus disease 2019 (COVID-19) infection has a negative impact on the cytokine profile of pregnant women. Increased levels of proinflammatory cytokines seem to be correlated with the severity of the disease, in addition to predisposing to miscarriage or premature birth. Proinflammatory cytokines increase the generation of reactive oxygen species (ROS). It is unclear how interleukin-6 (IL-6) found in the circulation of patients with severe COVID-19 might affect gestational health, particularly concerning umbilical cord function. This study tested the hypothesis that IL-6 present in the circulation of women with severe COVID-19 causes umbilical cord artery dysfunction by increasing ROS generation and activating redox-sensitive proteins. Umbilical cord arteries were incubated with serum from healthy women and women with severe COVID-19. Vascular function was assessed using concentration-effect curves to serotonin in the presence or absence of pharmacological agents, such as tocilizumab (antibody against the IL-6 receptor), tiron (ROS scavenger), ML171 (Nox1 inhibitor), and Y27632 (Rho kinase inhibitor). ROS generation was assessed by the dihydroethidine probe and Rho kinase activity by an enzymatic assay. Umbilical arteries exposed to serum from women with severe COVID-19 were hyperreactive to serotonin. This effect was abolished in the presence of tocilizumab, tiron, ML171, and Y27632. In addition, serum from women with severe COVID-19 increased Nox1-dependent ROS generation and Rho kinase activity. Increased Rho kinase activity was abolished by tocilizumab and tiron. Serum cytokines in women with severe COVID-19 promote umbilical artery dysfunction. IL-6 is key to Nox-linked vascular oxidative stress and activation of the Rho kinase pathway.


Subject(s)
COVID-19 , Interleukin-6 , Female , Humans , Pregnancy , 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt , Arteries/metabolism , Cytokines , Reactive Oxygen Species/metabolism , rho-Associated Kinases , Serotonin , Umbilical Cord
3.
Vascul Pharmacol ; 142: 106946, 2022 02.
Article in English | MEDLINE | ID: covidwho-1991342

ABSTRACT

BACKGROUND AND PURPOSE: Mitochondria play a central role in the host response to viral infection and immunity, being key to antiviral signaling and exacerbating inflammatory processes. Mitochondria and Toll-like receptor (TLR) have been suggested as potential targets in SARS-CoV-2 infection. However, the involvement of TLR9 in SARS-Cov-2-induced endothelial dysfunction and potential contribution to cardiovascular complications in COVID-19 have not been demonstrated. This study determined whether infection of endothelial cells by SARS-CoV-2 affects mitochondrial function and induces mitochondrial DNA (mtDNA) release. We also questioned whether TLR9 signaling mediates the inflammatory responses induced by SARS-CoV-2 in endothelial cells. EXPERIMENTAL APPROACH: Human umbilical vein endothelial cells (HUVECs) were infected by SARS-CoV-2 and immunofluorescence was used to confirm the infection. Mitochondrial function was analyzed by specific probes and mtDNA levels by real-time polymerase chain reaction (RT-PCR). Inflammatory markers were measured by ELISA, protein expression by western blot, intracellular calcium (Ca2+) by FLUOR-4, and vascular reactivity with a myography. KEY RESULTS: SARS-CoV-2 infected HUVECs, which express ACE2 and TMPRSS2 proteins, and promoted mitochondrial dysfunction, i.e. it increased mitochondria-derived superoxide anion, mitochondrial membrane potential, and mtDNA release, leading to activation of TLR9 and NF-kB, and release of cytokines. SARS-CoV-2 also decreased nitric oxide synthase (eNOS) expression and inhibited Ca2+ responses in endothelial cells. TLR9 blockade reduced SARS-CoV-2-induced IL-6 release and prevented decreased eNOS expression. mtDNA increased vascular reactivity to endothelin-1 (ET-1) in arteries from wild type, but not TLR9 knockout mice. These events were recapitulated in serum samples from COVID-19 patients, that exhibited increased levels of mtDNA compared to sex- and age-matched healthy subjects and patients with comorbidities. CONCLUSION AND APPLICATIONS: SARS-CoV-2 infection impairs mitochondrial function and activates TLR9 signaling in endothelial cells. TLR9 triggers inflammatory responses that lead to endothelial cell dysfunction, potentially contributing to the severity of symptoms in COVID-19. Targeting mitochondrial metabolic pathways may help to define novel therapeutic strategies for COVID-19.


Subject(s)
COVID-19 , DNA, Mitochondrial , Animals , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Endothelial Cells/metabolism , Humans , Mice , Mitochondria/metabolism , SARS-CoV-2 , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism
4.
Life Sci ; 276: 119376, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1157590

ABSTRACT

The severe forms and worsened outcomes of COVID-19 (coronavirus disease 19) are closely associated with hypertension and cardiovascular disease. Endothelial cells express Angiotensin-Converting Enzyme 2 (ACE2), which is the entrance door for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The hallmarks of severe illness caused by SARS-CoV-2 infection are increased levels of IL-6, C-reactive protein, D-dimer, ferritin, neutrophilia and lymphopenia, pulmonary intravascular coagulopathy and microthrombi of alveolar capillaries. The endothelial glycocalyx, a proteoglycan- and glycoprotein-rich layer covering the luminal side of endothelial cells, contributes to vascular homeostasis. It regulates vascular tonus and permeability, prevents thrombosis, and modulates leukocyte adhesion and inflammatory response. We hypothesized that cytokine production and reactive oxygen species (ROS) generation associated with COVID-19 leads to glycocalyx degradation. A cohort of 20 hospitalized patients with a confirmed COVID-19 diagnosis and healthy subjects were enrolled in this study. Mechanisms associated with glycocalyx degradation in COVID-19 were investigated. Increased plasma concentrations of IL-6 and IL1-ß, as well as increased lipid peroxidation and glycocalyx components were detected in plasma from COVID-19 patients compared to plasma from healthy subjects. Plasma from COVID-19 patients induced glycocalyx shedding in cultured human umbilical vein endothelial cells (HUVECs) and disrupted redox balance. Treatment of HUVECs with low molecular weight heparin inhibited the glycocalyx perturbation. In conclusion, plasma from COVID-19 patients promotes glycocalyx shedding and redox imbalance in endothelial cells, and heparin treatment potentially inhibits glycocalyx disruption.


Subject(s)
COVID-19/blood , COVID-19/pathology , Glycocalyx/pathology , Heparin/pharmacology , Aged , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/virology , COVID-19/metabolism , COVID-19 Testing , Case-Control Studies , Cell Adhesion/physiology , Endothelium, Vascular/metabolism , Female , Glycocalyx/metabolism , Glycocalyx/virology , Human Umbilical Vein Endothelial Cells , Humans , Interleukin-1beta/blood , Interleukin-6/blood , Male , Middle Aged , Oxidation-Reduction , SARS-CoV-2 , Thrombosis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL